

Aircraft Noise Terminology Noise 101 – Chapter 2 July 23, 2013

Courtesy of: HARRIS MILLER MILLER & HANSON INC.

San Francisco International Airport

Definition of Noise

What is Noise?

- Noise is unwanted sound
- Noise is subjective
- We measure sound not noise
- Relate sound levels to percent annoyed and activity interference

San Francisco International Airport

Sound Descriptors

Sound Pressure

The Decibel, dB

A-Weighted Decibel, dBA

Maximum A-weighted Sound Level, Lmax

Single Event Noise Exposure Level, SENEL

Day-Night Average Sound Level, DNL

Community Noise Equivalent Level, CNEL

San Francisco International Airport

Sound Descriptors

Sound Pressure

The Decibel, dB

A-Weighted Decibel, dBA

Maximum A-weighted Sound Level, Amax

Single Event Noise Exposure Level, SENEL

Day-Night Average Sound Level, DNL

Community Noise Equivalent Level, CNEL

Sound Pressure

- Is any pressure variation that the *human ear* can detect
- Consists of very small variations above and below atmospheric pressure
- Standard atmospheric variations associated with weather occur much slower and are much larger than sound pressure variations we hear

San Francisco International Airport

Sound Descriptors

Sound Pressure

The Decibel, dB

A-Weighted Decibel, dBA

Maximum A-weighted Sound Level, Amax

Single Event Noise Exposure Level, SENEL

Day-Night Average Sound Level, DNL

Community Noise Equivalent Level, CNEL

The Decibel, dB

The decibel is a ratio of measured sound pressure to a reference sound pressure

- A healthy human ear can detect sound amplitudes from 20 millionths of a Pascal (20 Pa)
- The ear can tolerate sound pressures more than a million times higher
- The decibel (dB) scale is used to accommodate this very large range of pressures

The Decibel, dB

Important benchmarks:

- Threshold of hearing is 0 dB

- Normal speaking voice at 3 ft. 65 dB

– 1 million times 20 Begin{aligned}
 Begin{a

- Threshold of pain is about 130-140 dB

San Francisco International Airport

The Decibel Scale

Normal Numbers		Decibels	Common Sounds
100,000,000,000,000		140	Near Jet Engine
10,000,000,000,000		130	Threshold of Pain
1,000,000,000,000		120	Night Club, Discotheque
100,000,000,000		110	
10,000,000,000		100	Pneumatic Hammer at 6 feet
1,000,000,000		90	
100,000,000		80	Vacuum Cleaner
10,000,000		70	
1,000,000		60	Normal Speech
100,000		50	
10,000		40	Quiet Resident Neighborhood
1,000		30	
100		20	Whisper
10		10	
1		0	Threshold of Hearing
0.1		-10	
0.01	ΞL	-20	

The Decibel Scale

- The smallest change in sound pressure amplitude that can be detected in a laboratory is about 1 dB
- Outside of the lab a change of 3 dB is barely perceptible
 - A 3-dB increase requires *two times* the sound energy

The Decibel Scale

- A change of 6 dB is clearly perceptible
 - A 6-dB increase requires four times the sound energy
- A change of 10 dB is required before the sound subjectively appears to be twice as loud
 - A 10-dB increase requires ten times the sound energy

San Francisco International Airport

Decibel Addition

- 100 dB + 100 dB =
 103 dB
- 100 dB + 100 dB + 100 dB + 100 dB =
 106 dB
- 100 dB + 100 dB =
 110 dB

Decibel Addition Rule of Thumb Method

When adding two sound levels that

Differ by:	Add to the higher level
0 to 1 dB	3 dB
2 to 3 dB	2 dB
4 to 9 dB	1 dB
10 dB	0 dB

Sound Descriptors

- Sound Pressure
- The Decibel, dB
- A-Weighted Decibel, dBA
- Maximum A-weighted Sound Level, Amax
- Single Event Noise Exposure Level, SENEL
- Day-Night Average Sound Level, DNL
- Community Noise Equivalent Level, CNEL

A-Weighted Decibel, dBA

Frequency (Hz) is the number of pressure variations per second

- The frequency of a sound produces it's distinctive tone
 - Rumble of distant thunder is low frequency
 - A whistle is high frequency
- Normal range of hearing for a healthy young person is 20 Hz to 20,000 Hz (or 20 kHz)
- Range of the lowest to highest piano note is 27.5 Hz to 4186 Hz

A-weighted Decibel, dBA

- The human auditory system is not equally sensitive to all frequencies
- To be a useful environmental analysis tool we need a way to measure sound the same way the ear hears it
- The A-weighted sound level achieves this goal
- The FAA has adopted the A-weighted sound level for environmental analyses

Sound Descriptors

Sound Pressure

The Decibel, dB

A-Weighted Decibel, dBA

Maximum A-weighted Sound Level, Amax

Single Event Noise Exposure Level, SENEL

Day-Night Average Sound Level, DNL

Community Noise Equivalent Level, CNEL

Maximum A-weighted Sound Level (Amax)

- Because of the variation in level of a sound event, it is often convenient to describe the event by using its maximum sound level, abbreviated as Amax
- Amax accounts only for sound amplitude
- Two events may have the same maximum level, but very different sound exposure levels

A-weighted Sound Pressure Level Time History

Sound Descriptors

- Sound Pressure
- The Decibel, dB
- A-Weighted Decibel, dBA
- Maximum A-weighted Sound Level, Amax
- Single Event Noise Exposure Level, SENEL
- Day-Night Average Sound Level, DNL
- Community Noise Equivalent Level, CNEL

Single Event Noise Exposure Level (SENEL)

- Describes the "noisiness" of a complete noise event
- Accounts for sound amplitude, and
- For the noise event duration
- Equivalent to Sound Exposure Level (SEL)

Sound Exposure Level (SEL)

Sound Descriptors

Sound Pressure

The Decibel, dB

A-Weighted Decibel, dBA

Maximum A-weighted Sound Level, Amax

Single Event Noise Exposure Level, SENEL

Day-Night Average Sound Level, DNL

Community Noise Equivalent Level, CNEL

Day-Night Average Sound Level (DNL)

- A way to describe the noise dose for a 24-hour period
- Accounts for noise event "noisiness" (SEL)
- Accounts for number of noise events
- Provides an additional weighting factor for nighttime (10X) operations
- Federal Aviation Regulation Standard
- Correlates well with community annoyance

Sound Descriptors

Sound Pressure

The Decibel, dB

A-Weighted Decibel, dBA

Maximum A-weighted Sound Level, Amax

Single Event Noise Exposure Level, SENEL

Day-Night Average Sound Level, DNL

Community Noise Equivalent Level, CNEL

Community Noise Equivalent Level (CNEL)

- Another way to describe the noise dose for a 24-hour period
- Accounts for noise event "noisiness" (SENEL)
- Accounts for number of noise events
- Provides an additional weighting factor for evening (3X) and nighttime (10X) operations
- California Airport Noise Regulation Standard
- Correlates well with community annoyance

Community Noise Equivalent Level (CNEL)

- DNL and CNEL are approximately equivalent
 - 65 dB CNEL incompatible with residential uses
 - These levels occur close to the airport

Non-Aircraft Noise Environments

- Nature contributes to our noise exposure
 - Wind in the trees, birds chirping, dogs barking, waves crashing, etc.
- Human activity contributes to our noise exposure
 - Cars, trucks, mowers, leaf blowers, schools, sirens, arterials, freeways, etc.
- The more urban our environment, the greater our level of noise exposure

Non-Aircraft Noise Environments

• Qualitative descriptions of non-aircraft noise environments:

DNL or	Qualitative
<u>CNEL, dB</u>	Description
~ 46 - 51	Quiet Suburban
~ 52 – 57	Suburban
~ 58 - 63	Urban
~ 64 - 69	Noisy Urban
~ 70 - 75	Very Noise Urban
~ 76 - 81	Downtown City Noise

How do we quantify sound?

- Measurements
- Modeling

How do we quantify sound? Measurements

- Measurements accurately tell us:
 - The sound levels at a specific site
 - For a specific time period
- Measurements are an historical record
- Measurements are not predictive, but can show *historical* trends

How do we quantify sound? Measurements

- Two types of measurements:
 - Short-term (made with portable equipment)
 - Long-term (made with permanent monitors)

Measuring Sound – Portable Monitors

Measuring Sound – Permanent Monitors

Measuring Sound – Permanent Conternational Airport Monitors

How do we quantify sound?

- Measurements
- Modeling

How do we quantify sound? Modeling

- Modeling can accurately tell us sound levels:
 - Over abroad geographic area as well as at specific sites
 - For a specific time period
- Modeling can produce an historical record
- Modeling can be predictive by showing *expected* trends

CNEL Contours

Aircraft Noise Effects Near An Airport

- Source of annoyance
- Not a threat to hearing or structures
- Potential for speech interference
- Other potential health effects are being studied
 - Learning in children
 - Sleep disturbance

Aircraft Noise Effects Away From An Airport

- Source of annoyance
 - More complaints come from outside of the 65 dB CNEL contours than from within
- Identifying the responsible agency can be frustrating
- Change in level more important than the absolute level

Aircraft Noise Resources

- Airport/Community Roundtable
 - James Castaneda, (650) 821-3571
 - Website: WWW.SFOROUNDTABLE.ORG
- SFO Aircraft Noise Abatement Office
 - Bert Ganoung, (650) 821-5100
 - SFO Website: <u>WWW.FLYQUIETSFO.COM</u>
- N.O.I.S.E.
 - Annual conference
 - Website: <u>WWW.AVIATIONNOISE.ORG</u>
- Airport Noise Report
 - A weekly update on aviation noise issues
 - Editor@airportnoisereport.com
 - Anne Kohut, (703)-729-4867

Aircraft Noise Resources (cont.)

- UC Davis Air Quality and Noise Symposium
 - Donna Reid, 530-752-8374
 - Dvreid@ucdavis.edu
- Harris Miller Miller & Hanson Inc.
 - Website: <u>WWW.HMMH.COM</u>
 - Technical papers on aviation noise
 - Links to other airports
 - ereindel@hmmh.com
 - Gene Reindel, (916) 568-1116
- Federal Interagency Committee on Aircraft Noise (FICAN)
 - Website: WWW.FICAN.ORG
 - Maryellen Eagan, (781) 229-0707
- FAA Aviation Noise Ombudsman
 - Paul Dykeman, (202) 267-3577

Aircraft Noise Terminology Summary

- Noise is unwanted sound
- Decibels do not add arithmetically
- Cumulative noise metrics (CNEL) correlate well with annoyance
- Sound levels can be measured and modeled
- Aircraft noise is not a threat to hearing or structures
- Resources are available to "get up to speed"

San Francisco International Airport

Thank you!